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Abstract 

We consider the energy-dependence of the large-order behavior of 
forward scattering amplitudes in theories having explicit mass param- 
eters and instanton solutions. We show that in weak coupling theories 
the exponential part of the EspinmRingwaid type cross section can 
be determined by taking the minimum element of the perturbative se- 
ries, suggesting that the series is asymptotic. This observation enables 
us to calculate the nonperturbative cross section by the perturbation 
of the Bore1 transforril 6(b) about the instanton-anti-instanton singu- 
larity. The anomalous cross section in the standard model using the 
leading energy-dependent S(b) is presented. 
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1 Introduction 

Although there are extensive works for the large-order behavior of perturbation theory, its 

dependence on the external momenta is relatively unexplored. The only well known example 

on the momentum-dependence of the large-order behavior appears to be that of the scalar 

d4 theory. In the scalar theory, the large-order behavior of the r-point Green’s function 

G(“(p,, . - - ,p,) takes in general the form [l] 

n 3 00, (1) 

where v and R are constants and C, is independent of n. The momentum-dependence of 

the large-order behavior is factored out; thus, it is trivial. In section 2 we present examples 

of large-order behavior with interesting nontrivial momentum-dependence in theories having 

instanton solutions. Specifically, we calculate the large-order behavior of the forward scat- 

tering amplitudes induced by the instanton-anti-instanton singularity of the Bore1 transform 

in several models, including the standard model of electroweak interactions. 

Aside from its intrinsic theoretical interest, the study of the energy-dependence of the 

large-order behavior is also interesting because it may find some application in giving a 

bound to the Espinosa-Ringwald type nonperturbative effects in high-energy scatterings. 

Generally, the perturbative expansion in the coupling g of Green’s functions in field theories 

‘is believed to be asymp’totic.’ If’it ‘i~‘%id&d so, the nonpertur~at‘ii;e‘~ffeCt‘s“$ssijciated‘w”lth:”““^” 
~ . . ,, , 

a Green’s function may be estimated by taking the minimum element of the perturbative 

series. A well-known example is the quantum mechanical double-well potential problem. The 
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minimum element of the perturbative series for the ground state energy is of order e-2& [I], 

where 5’s is the instanton action, giving the correct exponential part of the instanton-anti- 

instanton contributions. Of course, the leading nonperturbative correction to the ground 

state energy comes not from the instanton-anti-instanton pairs but from the instantons, 

whose contributions the perturbative series does not account for. The reason for this is 

apparently related to the topology of the fluctuations. By definition, the perturbation in 

the coupling involves only fluctuations that begin and end at one of the classical vacua 

at time t = ~foo respectively, to which the instantons do not belong. Thus the leading 

nonperturbatve corrections arising from the perurbative series are naturally expected to 

be those of the instanton-anti-instantons. This example suggests that at least for vacuum 

quantities that do not involve external parameters such as momenta, the nonperturbative 

effects associated with the fluctuations compatible with the perturbation in the coupling can 

be estimated by the minimum element of the perturbative series. 

An extension of this idea to Green’s functions with large external momenta to estimate 

their nonperturbative content appears to be possible, at least in principle, for the theo- 

ries that we consider in the following. We consider theories having explicit dimensional 

parameters and instanton solutions (including constrained instantons), and exclude QCD 

type interactions that have an infrared divergence associated with the instanton size. When 

- - -the renormalon effects are neglected, the coefficients of the perturbative series-of a Green’s -- -- 

function can be determined by its Bore1 transform calculated in the instanton-anti-instanton 

background. Since the renormalons are associated with the Feynman diagrams having few in- 
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termediate particles, they can be safely neglected for the instanton-induced nonperturbative 

effects that involve multiparticle production [2]. Therefore in this article the renormalons 

are not considered. 

For several models, including the standard model, the Bore1 transform 6(b) for the for- 

ward scattering amplitudes was calculated in Ref. [3] within the saddle point approximation. 

There, it was shown that the Bore1 transform has the instanton-anti-instanton singularity at 

b = 1, as for the vacuum tunneling amplitudes, while the strength of the singularity generally 

depends on the c.m. energy. As is well known, the large-order behavior of perturbation the- 

ory is controlled by the functional behavior of the Bore1 transform near the singularity, and 

the perturbation of S(b) about the singularity provides a systematic approximation to caicu- 

late the perturbative asymptotics. We show in section 3 that the perturbative expression in 

E/&, where & is the sphaleron energy, of the exponential part of the Espinosa-Ringwald 

type cross section [4] can be obtained by taking the minimum element of the perturbative 

series calculated by the expansion of C(b) about the Bore1 singularity. This suggests that 

the perturbative series in the coupling is indeed asymptotic. 

Although the perturbation of 5(b) about the Bore1 singularity gives identical perturbative 

expression for the Espinosa-Ringwald type cross section as in the KRT formalism [9], an 

important difference appears at high energies. In the KRT formalism, the Green’s functions 

. . ,are..evaluated in the instanton background to calculate the nonperturbative cross section, 

and the c.m. energy turns out to be the expansion parameter of the cross section. Since in 

the Bore1 transform method the energy is not the expansion parameter, it could possibly give 
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a better description of the nonperturbative effects at high energies. Indeed, the anomalous 

cross section in the standard model calculated using the leading energy-dependent S(b) is 

exponentially suppressed, and thus unitarity is not violated, at all reasonably high energies. 

This, however, should be regarded as an interesting observation rather than a concrete 

conclusion, because, as we will see, the validity of the leading approximation breaks down at 

relatively low energies. Whether this interesting result, or at least the improved high-energy 

behavior of the anomalous cross section, will be preserved even when higher-order corrections 

are included is under investigation. 

2 Large-order behavior 

We calculate in this section the leading large-order behavior of the forward scattering ampli- 

tudes using the Bore1 transform 5(b). The nontrivial energy-dependence of the large-order 

behavior is emphasized. Let us consider a theory having a dimensionless coupling g and mass 

m. An extension to theories having more than one mass parameters should be straightfor- 

ward. The Lagrangian is 

(2) 

with 4 representing generic fields. We assume that m is independent of g, and g can be 

always factored out of L so that L is independent of g. We also assume that there is an 

instanton solution with the action 

SI so =- 
9 (3) 
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where Se is a constant. Let us consider the perturbative expansion in the coupling g of the 

twobody forward scattering amplitudes 

AC-PI, -pi : pl,pr,g) = 5 ad’. 
n=O 

(4 

As shown by Crutchfield II [5], th e coefficients of the perturbative series can be determined 

by the Bore1 transform, 3(b), defined by 

ezb o(g) d z (5) 

where z = 2$-,/g, and a(g) is the imaginary part of the forward scattering amplitude calcu- 

lated in the instanton-anti-instanton background. The Bore1 transform in (5) is defined such 

that the instanton-anti-instanton singularity of the vacuum tunneling amplitudes is located 

at b = 1. We also note that G(b) in (5) g a rees with that of Crutchfield on the positive real 

axis on the lower-half plane. Note that a(g) is nothing but the Espinosa-Ringwald type 

cross section that has been extensively studied in relation to the anomalous baryon number 

violation in the standard model [6]. Expanding 5(b) at the origin, b = 0, 

00 

S(b) = c c, b”, (6) n=O 

we can obtain the coefficients a, by 

a, = (n - 1 n 
q!cn-l as, * ( > 

Generally the Espinosa-Ringwald type cross section is given in the form 

o(g) m (i)‘exp (-FF(z)) m zv exp(-.zF(z)), (8) 
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and 

with u a model-dependent 

F(x) = 1 - U(z) (9) 

constant, 5 = c/z, and t: = E/m where E is the c.m. energy 

[6]. U(x) can be calculated perturbatively in x by doing perturbation about the instanton 

background, and its first few terms are known in several models [6, 81. Let us now consider 

the large-order behavior of the standard model. In the standard model, So = 8n2,g = gi 

and m = m, where g,,,, m, are the weak-gauge boson coupling and the W-boson mass 

respectively. From Ref. [7] 

5 
u = -. 

6 

For simplicity, we assume that the Weinberg angle vanishes so that electromagnetism de- 

couples, and the Higgs coupling constant X is proportional to g2. Then U(x) is given by 

U(x) = $3x)$ - ix2 + * - a. 

Substituting (8) into (5), we have 

exp [z (b - 1 + U(x)) + v In z] d z, 

(11) 

(12) 

which may be evaluated by the saddle point approximation. The equation for the saddle 

point 2, or equivalently 5 = c/Z is 

l-b = v,+ l-Z- 
e ( ) 

;z U@:) 

v- = -x 
fz 

- ;(3f); + p + . . . ) (13) 
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and the Bore1 transform is given by 

w - z4-+--exPW t Vs)) +vln% 

The Bore1 singularity occurs at 5 = 0, or equivalently at b = 1 from (13), and solving (13) 

in series of (1 - b) we have 

z(b) = ; (1 - b) 
( 

1 + ; ($) * (1 - b)f + *. * 
) 

. 

Thus the leading singular behavior of 5(b) is given by 

6(b) - (1 - b)-@+‘), (16) 

which shows that the strength of the leading singularity is independent of the energy. Using 

(16) we find that at large orders the perturbative coefficients a, are given by 

a, + C(E) n! n”-’ 
n 

for n-boo (17) 

where C(E) is a function of the energy. As in the Scala. >4 theory the energy-dependence 

of the leading perturbative asymptotics appears as a prefactor, and is thus trivial. 

Nontrivial energy-dependence of the large-order behavior emerges in the case of the 

quantum mechanical double-well potential, the two-dimensional abelian Higgs model and 

the nonabelian Higgs model in three dimensions. For the double-well potential and the 

two-dimensional abelian Higgs model, the leading Bore1 transform e(b) from the similar 

calculation as in the standard model is given by [3] 

-ck/l 

c-(b) hl (1 _ b)-(“+‘+‘l’) for b + 1 
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with 1 = 2, Ic = 0 for the double-well potential, and 1 = 1, k = l/2 for the twodimensional 

abelian Higgs model. For the nonabelian Higgs model in three dimensions, 

e(b) N (1 - b)-(2”+3/2) exp $, (19) 

where c is the ‘t Hooft-Polyakov magnetic monolpole charge. Note the strong energy- 

dependence of the strength of the singularities in (18) and (19). The coefficients c,, can 

be determined by 

1 
k-1 = /- 

‘@) db 
2?ri c bn 

= &L5(b)eBnl”bdb (20) 

where C is a path encircling the origin in the complex b-plane. With 6(b) given in (18), 

equation (20) may be evaluated by the saddle point method for large n. It is easy to check 

that the saddle point for the double-well potential and the two-dimensional abelian Higgs 

model is given by 

g= 
n (l+k-okik)) 9 n+v+l+c/l 

and the perturbative coefficients have the asymptotic form 

(21) 

a, + C’(E) n! n(V-l+cl’) (In n)-rkil 
( > 
& n for n + 00, 

0 
(22) 

where C’(E) is a function of the energy. A similar calculation for the nonabelian Higgs 

model in three dimensions gives, 

Ll-cE(l+O(&)), (23) 
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and 

a, + C”(E) n! &-1) p6 l 
( > 

n 
2so 

where C”(E) is a function of the energy. Note that 

b-k1 for n*oo 

for n -+ cm, (24) 

(25) 

in (21) and (23), h’ h ’ pl’ w IC Irn les that the main contribution to the integral in (20) comes from 

the region near the singularity, where the approximate Bore1 transform in (18) and (19) 

are valid. Unlike the case of the scalar #Jo theory or the standard model, the perturbative 

asymptotics in (22) and (24) have a nontrivial energy-dependence. As shown in Ref. [3], 

the nature and strength of the leading Bore1 singularity are determined by the interaction 

energy of infinitely separated instanton-anti-instanton pairs, and the energy-dependence of 

the singularity in (IS) and (19) comes from the coupling of the external momenta to the quasi- 

zeromodes in the classical field. Thus, for nontrivial energy-dependence of the large-order 

behavior to occu- ‘t is essential that there exist quasi-zeromodes that couple to the external 

momenta. The ,/ial energy-dependence of the large-order behavior in the scalar 44 theory 

simply reflects the fact that there are no quasi-zeromodes in the instanton backgrounds that 

determine the Bore1 singularity. 
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3 Nonperturbative effects from the perturbative se- 

ries 

We now show that the Espinosa-Ringwald type cross section can be obtained by taking the 

minimum element of the perturbative series. This is the reverse process of obtaining the 

large-order behavior from the Espinosa-Ringwald type cross section. We assume that the 

coupling g is small. Let us first consider eq. (12). Expanding the integrand about 6 = 0 we 

have, 

e(b) - n2 (n”“- i)! 
- I 

aIr exp [z (-1 + U(x)) + (n + v - 1) Inz] dz. (26) 

For large n, (26) may be evaluated by the saddle point method, giving 

G-1 - 
(n J l)! 

exp [E(n) (-1 + U(S$n))) + (n + v - 1) In E(n)], (27) 

where z(n) is given by 

n+v-1 

+4 
+ g w1+ w>>> 

r=E(n) = O’ 

Now the perturbative series in (4) is given by 

d(pi,g) = 2 (n - l)! c,,-l ( &)n N C eF(n~g), 
n=l n 

with 

F(n,g) = Z(n) (-1 + U(Z(n))) + (n + u - 1) In Z(n) + n In 
( > 

& . 
0 

The minimum element of the perturbative series occurs at n = ii, where ii satisfies 

(28) 

(29) 

(30) 

gm 9) = 0. 
n&i 

(31) 
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Using (28), eq. (31) gives 

2so 
z(fi) = -. 

9 
(32) 

Substituting (32) into (30), the minimum element of the perturbative series is given by 

aR gii - exp [E(C) (-1 + U(Z(fi)))] 

= exp[-$(l-u($5))]9 (33) 

which is the exponential part of the nonperturbative cross section in (8). In deriving (33), 

we assumed that Z(n) in (28) is well defined about n = fi given by (32). It is easy to check 

that this condition is satisfied if the energy E is small. Thus the perturbative expression for 

F in x can be obtained by the minimum element of the perturbative series. 

If we now slightly modify the argument, we can see that the Espinosa-Ringwald type 

cross section can also be obtained by doing perturbation of 5(b) about the Bore1 singularity 

at b = 1. From the exponential part of (14), 

C(b) - exp [E(b) (b - 1 + U(Z(b))) + YlnZ(b)] , (34) 

where z(b) = c/Z(b) is defined in (13). Th e coefficients c,+i, from the evaluation of (20) 

with (34) using the saddle point approximation, is given by 

Cn-1 - exp [Z (b(n)) (L(n) - 1 + U(if(i(n)))) + Vln4(b(n)) - nlnb(n)] (35) 

with b(n) being defined by 

Z(b(n)) - & = 0. 
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In deriving (36), we have used the saddle point equation (13) for g(b). Now the perturbative 

asymptotics for the forward scattering amplitudes is given by 

a, gn - (n - l)! c,-1 9 n 
( > g) NeK 

(37) 

where 

K = 2(6(n)) (b(n) - 1 + U(Z(b(n)))) + u In Z(b(n)) - n + n In 
( ) 

2sr{n) (38) 

using the Stirling’s formula. The minimum element of the perturbative series occurs at order 

ti, where fi is defined by 

2so 

i&) g 
=-. W-4 

For (39), we have used (13) and (36). Now from (13) and (39), 

Substituting (36), (40) into (38), we have 

- 
afign w exp [-2(6(E)) ( 1 - U(z(b(fi)))] 

- exp[-f(l-U(g))], (41) 

which is again the exponential part of the Espinosa-Ringwald type cross section. 

Now in the manipulation through (34) to (41)’ we have implicitly assumed that z(b) 

given in (13) is well defined, and 6(n) in (36) is solvable near the saddle point n = fi. It is 

not difficult to see that these conditions are satisfied if the energy E is small. For example, 
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let us assume that the potential U(z) in the standard model is given by the leading term in 

(11) 

U(z) = f (32):. (42) 

Then from (13), 

l-b= :5(b) - 6 L(3z(b))+ . 

It is easy to check that s(b) in (43) is solvable in the vicinity, 

(43) 

(44) 

of the Bore1 singularity at b = 1. From (40) and (43) we have 

1 3cg k 
l-6@)++(-) . 

0 6 2So 

This, combined with (44), gives a bound on the energy 

os2s, 
‘(l-p!,““) 5+/q, 

(45) 

(46) 

or 

c L crnaz- (47) 

For g = 47ro, = 4n/30, cmaz M 3.96. The inclusion of higher order terms of U(z) in (11) 

will not change the qualitative picture, though cmor may change. Thus it is clear that 

at low energies we can derivgthe nonperturbative effects from the perturbative series. In 

particular, solving 5 in (13) perturbatively in (1 - b), we can obtain the exponential part of 

the Espinosa-Ringwald type cross section given in (8)-(11). Although the Bore1 transform 
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method gives an identical result for the nonperturbative cross section at low energies, we 

expect a deviation from the usual expression at energies of order cm,,. 

In the Bore1 transform method (1 - b) is the expansion parameter instead of the energy, 

and thus there is no direct restriction for the energy to be small, although a new restriction 

arises from the criterion for the validity of the approximation. Thus the high-energy behavior 

of the nonperturbative cross section may be better described in the Bore1 transform method 

than in the original Espinosa, Ringwald calculation [4]. This point will be illustrated in next 

section by calculating the anomalous cross section in the standard model using the leading 

energy-dependent C(b). 

4 The anomalous cross section from the Bore1 trans- 

form 

Keeping only the leading term 

leading energy-dependent ?2( b) 

of U(z) in (ll), and substituting (15) into (14), we have the 

for the standard model 

with u given in (10). From (35) 

cn-l - exp 5 Y [ 0 
u 3E + (1 - qn))S - 

b)i - vln(1 -b) 
I 

vln(1 -b(n)) - n l,&(n) 1 

(48) 

(4% 
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with b(n) defined by 

(501 

The minimum element of the perturbative series is given by 

%=l Sn - = (fi-l)& 1 9 n 
( > - 2so 

[ 0 
y 3r ’ (1 -T;(c))% -uln - exp - - 
2 u 

( 

2slJ (1 - @)) ) 1 --n-u 
9u 

(51) 
with 

2so +)=,. (52) 

We added in (51) (u ln(gu/2So) - u) so that the exponential part becomes -47r/cr, at c = 0. 

Eq. (51) can be written as, 

afign -e -kXF 
au (53) 

where 

Jg+q - 2 ; ; 
[ 0 

’ (1 _ L(fi)) ’ _ u ln ( 4B(1amf’fi”) - u] - 
w 

Substituting (52) into (50), &(ii) is determined by 

y 
l-1@) -g y ( > 

3c + (1 - Q=&))-f - 4** 
a, 

(54) 

(55) 

Note the negative sign in the second term of (55). Th’ IS pushes b(fi) toward the Bore1 
-- -_ ..I 

singularity, about which C(b) in (48) ’ 1s valid. Table 1 shows 5(6(n)) and F($(FL)) for various 

values of c from the numerical solution of b(fi) in (55). F decreases very slowly, and is not 
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much different from its vacuum value at energies well over the sphaleron energy. In fact, in 

the limit c + co, the solution of (55) is 

1 - b(n) = 0 (;)4. (56) 

Substituting (56) into (54), we see that F decreases logarithmically at high energies; and 

thus unitarity is not violated at all reasonably high energies (E < elfa,). Note how close &ii) 

in (56) is to the Bore1 singularity at 6 = 1. This is not the case in the double-well potential 

or the two-dimensional abelian Higgs model. In these theories, we have 

1 - 6(C) = - 
& (u + 1 + e/f) 

b(E) + & (v + 1 + c/q - 
(57) 

from (21) and (39), which shows that Z(C) shifts away from the singularity as c increases. 

Thus the approximate Bore1 transform in (18) of these models is not valid at high energies. 

Now when does our approximation for (48) of the standard model break down? In this case, 

it is not as obvious as in the double-well potential or the two-dimensional abelian Higgs 

model because b(n) stays close to the Bore1 singularity at all energies. However, in the 

standard model, the validity of the approximation may be measured by 

8~ = cd (1 - b)i (58) 

in (15), which is an expansion parameter of z(b). F or a good approximation, we require 

6x cc 1. (59) 

From Table 1, we see that at e N 5, Sx becomes of order one. The approximation breaks 

down at quite low energies, and so beyond these energies the higher-order terms of U(x) 
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and s(b) in (ll), (15) respectively should be included. Thus the unitarity preserving high- 

energy behavior of F from the leading approximation is not a concrete result. It would be 

an interesting problem to see how higher-order corrections affect the high-energy behavior 

of the nonperturbative cross section. 

5 Conclusion 

In summary, we have presented examples of nontrivial energy-dependence of large-order 

behavior in perturbation theory. A necessary condition for a nontrivial energy-dependence 

of large-order behavior was shown to be that the classical field that determines the Bore1 

singularity must have quasi-zeromodes coupled to the external momenta. We were also 

able to show that the Espinosa-Ringwald type cross section can be obtained by taking 

the minimum element of the perturbative series in the coupling. This suggests that the 

perturbative series in the coupling is indeed asymptotic. In section 4 we calculated the 

anomalous cross section in the standard model using the leading energy-dependent Bore1 

transform of the forward scattering amplitudes. It was shown that the validity of the leading 

approximation for the Bore1 transform breaks down at relatively low energies. Nevertheless, 

if we extrapolate the anomalous cross section beyond the energy range where the leading 

approximation is valid, we find it is exponentially suppressed at all reasonably high energies. 

I am grateful to A.H. Mueller and V.I. Zakharov for useful discussions and comments. I am 

also very thankful to E. Laenen for discussions and reading the manuscript. 
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e 1-q fi) qfi> F 6x 

1 .19 1o-2 .26 1O-2 .999 .125 

5 .68 1O-3 .69 1O-2 l .994 .752 

10 .ll 1O-3 .25 1O-2 .989 1.033 

100 .13 lo-’ .31 1O-5 .969 1.088 

200 .80 lo-’ .38 1O-6 .963 1.086 

400 .50 10-l’ .48 1O-7 .956 1.085 

Table 1: Saddle point values versus energy 
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